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Abstract. We evaluate the residue at the graviton ghost pole for spinor-spinor scattering of 
gravitating spin-; particles for the lowest-order graph, and prove it to be non-zero. We 
conclude that attempts to quantize gravity in models for which counter terms are required 
are unsuccessful; a possible class of models is briefly considered. 

1. Introduction 

The counter terms needed to renormalize a quantum field theoretic version of 
Einstein’s gravitational Lagrangian were shown earlier (Nouri-Moghadam and Taylor 
1976a, b, to be referred to as I and 11) to produce ghost particles at the tree graph level 
which could not be removed by a suitable choice of parameters both for scalar and 
vector matter fields. This disturbing situation requires further clarification, both by 
investigating higher-order graphs and also by considering other sources of the gravita- 
tional field. We turn to the latter question in this paper, in particular considering the 
case of a world composed purely of spin-; particles interacting through their gravita- 
tional field; the question of higher orders we defer to another publication. 

It could be argued that our earlier results (Nouri-Moghadam and Taylor 1975) and 
those of other workers (t’Hooft and Veltman 1974, Deser and van Nieuwenhuizen 
1974a, b, Capper and Duff 1974) already indicate the lack of renormalizability of any 
quantum field theory including Einstein’s non-linear Lagrangian R J - g. However we 
feel that if it were possible, by a suitable choice of matter terms, to eliminate the ghosts 
arising from the one-loop counter terms then a possible model for further investigation 
at the two-loop level would have been obtained. Since there is clearly a very important 
question at stake, namely quantizing Einsteinian gravity, then we should continue our 
earlier quest for ghost elimination as energetically as possible. This paper is devoted to 
that quest. 

In the next section we formulate the problem in terms of the effective vertex 
functions for the spinors and propagator for the graviton. We discuss the ghost pole 
contributions in the next section and determine the range of conditions under which this 
can be eliminated. We conclude with a brief discussion. 

2. Ihe vertex and propagator 

The notation will be the same as in I and 11, so that the graviton propagator (T(gFvgALT))O 
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for the graviton field g,, arising from the Lagrangian 

is 
L , = G ( R  +aR2+4bR,,,Rpu) 

where the Ti are the six independent fourth-rank tensors of I and the Ai are the 
functions of the graviton mass p 2  only with poles at p 2 = 0 ,  p 2 =  1/2(3a+4b),  and 
p 2  = 1/46, and are given in I. 

The matter Lagrangian for the self-gravitational interaction of a spin-$ neutrino and 
field operator $ will be 

Lmatter= J-,iLc””&i(l + Y 5 ) ( q &  -$M (2.1) 
where Lpu is the vierbein and the y are the usual Dirac matrices; the arrows on the 
covariant differentiation symbol V, denote the direction it acts. In terms of the 
expansion about the Lorentz metric q,,, 

g,, = 7,” + h,, 
./g = ( 1  +$ha, +. . .) 
Lpa = .,,*a +. . , 

we have that the Lagrangian (2.1) becomes 
i(l +tha,)(qwu -;h”“)&yu$(l +y5) (& -$B,lPs]m PB . . .)q 

where B,[rrS1 is the spinor connection defined in Salam and Strathdee (1970), and the 
resulting vertex function for the emission of a graviton ha, from the spinor particle with 
change of momentum from k ,  to - k z  of figure 1 will thus be 

Vas (k19 k2) = h(2gasgc”““ -gzgi-g$g&a ( 1  + ys)(k 1 - k ~ ) ~ .  (2.2) 

Figure 1. The vertex function V,,(k,, k2) determining the process of pair annihilation to 
produce a graviton of polarization a, p. 

The vertex function has now to be applied to both ends of the graviton propagator in 
order to evaluate the graph of figure 2. The result will thus be 

Figure 2. The annihilation-creation process with a single intermediate graviton giving a 
ghost contribution. 
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This can be evaluated after some calculation to be 

where the superscripts 1 and 2 denote the particles to which the y matrices are attached. 

3. The pole contribution 

We now evaluate the expression 

E(k3)6(k2)VaB (kl, k2)QaBLI"Vpv(k3, k4)U(k4)U (kl)  (3.1) 

with all external particles on mass-shell, k?  = m2,  i = 1-4, where we take the spinors to 
have mass m at this stage and let m go to zero at the end of the calculation. Our results 
will be of use to discuss the massive spinor case shortly. 

We use the Dirac equations 

YlU(k1) = mu(k1) f i ( k 2 ) ] 1 2  = -mG(k2) 

where X = ywkp .  Then (3.1) reduces to 

&fi(k3)fi(k2)rv ( k 4 b  ( k d  
with 

I'=36(2m)2A1 +2Az(X+4m2)+24(2m)2(kl +k2)2A3+4(2m)2[(kl +k2)'12As 

+A~, [Y+4(2m)~(k ,  + k ~ ) ~ ]  (3.2) 

and 



1316 M Nouri -Moghadam 

so that 

[wi -XZ) (~  +y5)](2)[w3-K4)(1 +Ys)l(l) 

= - 16[P(1+ y5)]"'[@(1 + y5)]")+8m(1 -2y5)'2'[@(1 + y ~ ) ] ' ~ )  

+ 8m (1 - 2y5)"'[P( 1 + y 5 ) ] ( 2 )  - 4m '( 1 - 2y5)(')( 1 - 275)"). 

The parity and time-reversal conserving parts of this last expression is (Goldberger et a1 
1957): 

- 16[@ (1)  P ( 2 )  +(Oy5)"'~y5)"']+8m(O'"+P'2')-4m2(1 +4y:"y:2') 

and we may use the equivalence identities (Scadron and Jones 1968) to write this latter 
expression as 

+ 24v(Ks - K p )  + KT( 16P2 - 2t )  -4m2Ks - 16(P2 + U -4m 2)Kv + (4t - 16u)KA 

in terms of the five covariants Ks = 1, KP = yy 'y?) ,  KA = (yfiy5) (yWy5)('), KT = 
uzb$!, Kv = $yF)y f ) ,  where U = PQ, and t is the usual invariant A'. 

If we consider the limit as m + 0 in the parity and time-reversal conserving part of 
the amplitude r we obtain on that same part D of the term X .  When m = 0, the 
covariant KT depends on other covariants as 

(1) 

$tKT = (& -Kp) .  

Substituting this and evaluating the terms in X as functions of the centre-of-mass 
momentum k and the scattering angle 6 we obtain 

X = 4 k 2 ( s  COS 6-4 ) (Kv+KA) .  

Thus the graviton pole contribution is proportional to 

(S COS 6-4) / (k2+ 1/16b). 

This cannot be made zero by any choice of b except b = 0, when the whole approach 
using counter terms breaks down (Nouri-Moghadam and Taylor 1976a). Thus the 
graviton pole cannot be removed from tree graphs involving neutrinos as external 
particles. 

If we turn to the massive case, we consider the Lagrangian (2.1) without y5 with the 
added mass term m C & .  This gives an addition to the graviton-two-spinor vertex 
VaP(k l ,  k2 )  of (2.2) equal to tmg,,, and so gives the two further contributions to the 
single-graviton tree graph (2.3) equal to 

tm 'Qaapfi + $mQnap" V,, ( k  3 ,  k4) + 4m VaP ( k  3 ,  k4) QQPCIfi, 

But Qaafiu = Q@P+ = 0 at the graviton pole at p 2  = - 1/4b (Nouri-Moghadam and 
Taylor 1976a), so these additional terms give no contribution to our discussion. We are 
thus left with the amplitude r of (3.2) with y5 deleted everywhere from it. The 
reduction to the covariants Ks, KP, Kv, KA and KT can now proceed, these being 
independent. The result of this reduction for the coefficient of KT is - tA2/64. The 
graviton pole contribution in the centre of mass of incoming particles thus is propor- 
tional to 

(ip2-m2)(1-cos 6)/bp2(p2+1/4b). 
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We can remove the pole at p 2 =  -1/4b if m 2 =  -1/4b; the coefficient of Kp is 
proportional to 

(16m-8v)A2=a(k + k ’ ,  2 k o ) ( - k - k ’ ,  2k0) 

= i[4k ; + ( k  + k ’)2] = :p + i ( k  + k r ) 2  

= -1/16b +z(l+cOs 8 ) / b = ( ~ ~ 0 ~ 8 / b + 1 1 / 1 6 b ) # O  

for arbitrary 8. 

4. Discussion 

We have failed to remove the ghost pole from the spinor-spinor scattering amplitude in 
lowest order. It is exceedingly unlikely that higher orders will be helpful here, so we 
conclude that other particles must be present in order to eliminate the ghost. As we 
showed in I this is a ‘massive’ spin-2 particle so may be cancelled by a further such 
particle introduced on its own or as the spin-2 component of a reducible spin-3 state. 

At this stage there seems little hope of finding such a state without much further 
work. However a useful hint may be present in the recent developments of curved 
super-space (Arnowitt and Nath 1975). Even if curved super-space is not the appro- 
priate theory there may be other gauge theories which have no source terms and also are 
counter term free at the higher-loop level. Clearly such an avenue has the greatest hope 
of success for quantizing gravity; the present paper indicates that it is not possible to 
clear up the mess after the counter terms have been forced into existence. 
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